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Abstract

We developed a deep learning framework that helps to automatically identify and
segment lung cancer areas in patients’ tissue specimens. The study was based on a
cohort of lung cancer patients operated at the Uppsala University Hospital. The
tissues were reviewed by lung pathologists and then the cores were compiled to
tissue micro-arrays (TMAs). For experiments, hematoxylin-eosin stained slides
from 712 patients were scanned and then manually annotated. Then these scans and
annotations were used to train segmentation models of the developed framework.
The performance of the developed deep learning framework was evaluated on fully
annotated TMA cores from 178 patients reaching pixel-wise precision of 0.80
and recall of 0.86. Finally, publicly available Stanford TMA cores were used to
demonstrate high performance of the framework qualitatively.

1 Introduction

The microscopic evaluation of cancer is the corner stone of clinical diagnostics, and particularly
in lung cancer where the evaluation is highly dependent on the experience of a pathologist. The
evaluation can vary considerably between individual pathologists. Digitalization of tissue specimens
facilitates training of models for automatic diagnosis. Nevertheless, it is impossible to fill the entire
image of a TMA into the VRAM of a modern GPU. Thus, the image must be split into patches treated
as examples in a semantic segmentation problem. Then the predicted patches are stitched to form the
entire TMA prediction. Therefore, we developed a deep learning framework to learn from such data.

2 The Deep Learning Framework

Let (xi, yi) ⊆ X ×Y be a patch or an example of a given dataset, where i ∈ N. The shapes are
h× w × 3 and h× w × 1 respectively. We can simplify and formulate a deep network as a function
f(x; θ), where θ is a collection of parameters of all the parametrized layers. The learning task is a

process of searching for the optimal set of parameters θ̂ that minimizes a loss function L(y, f(x; θ)).
A commonly used loss function for binary task (‘benign’ and ‘cancer’) is sigmoid cross entropy loss.
First, the output of the function f is transformed to a probabilistic value in the range of [0, 1] via a
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sigmoid function as follows

σ(z) =
1

1 + exp(−z)
(1)

Then the cross entropy loss is computed as

L(y, f(x; θ)) = −y log(σ(f(x; θ))− (1− y) log(1− σ(f(x; θ))) (2)

Search of the optimal set of parameters θ̂ is known as optimization in machine learning. Popular
optimizers include Stochastic Gradient Descent (SGD), Adaptive Gradient (AdaGrad), and Root
Mean Square Propagation (RMSProp) [4]. Recently, Adaptive Moment Estimation (Adam) was
proposed in [6] that has become a particularly popular method for optimizing deep networks and is
the optimizer used in our framework.

Semantic Segmentation Networks A semantic segmentation network predicts every pixel of a
patch as one of the class labels. We selected 7 most popular network architectures that are considered
more capable than others for semantic segmentation such as ‘123S’, ‘dilatednet’, ‘drn-C26’, ‘drn-
C42’, ‘unet’, ‘densenet-D56’, and ‘densenet-D103’.

The 123S network is based on the classic FCN-8S [7]. The network is relatively compact, and
thus less prone to overfitting. The dilatednet is a network derived from FCN-32S [7], where the
transposed convolution layers are replaced by convolution layers with dilation filters [8]. The dilated
residual networks (drn-C26/C42) [9] combine dilated convolution and residual networks (ResNet)
[5], which employ residual units to build very deep networks for image classification. The unet [2]
has an encoder for downsampling and a decoder for upsampling, which are linked to form a U shape
and thus the name. The network has high capacity of feature representation, and it can learn and
aggregate knowledge at multiple scales in the data. It has become one of the most popular networks
for semantic segmentation problems in biomedical imaging. Finally, DenseNet is a very deep network
architecture that uses ‘dense blocks’ to allow each layer to connect every other layer in a feed-forward
fashion. The FC-DenseNet [3] replaces all the fully connected layers with fully convolution layers.
There are 56 layer in densenet-D56 and 103 layers in densenet-D103 respectively.

3 Experimental Setup and Results

The developed deep learning framework was trained and then evaluated on a lung cancer dataset. The
dataset was formed from a cohort of 712 lung cancer patients operated in Uppsala Hospital including
223 squamous, 398 adenocarcinoma, 74 large cell cancer, and 17 other cancer types. For experiments,
TMAs with H&E stained cores were chosen. All cores were scanned as high resolution images at 0.5
µm/pixel, corresponding to approximately 9 million RGB pixels for each core. Then cancer (red),
stroma (blue), necrosis (black), normal lung tissue areas (green), and areas to exclude from training
(yellow) were annotated in the images (see Figure 1a, the second column with 2 annotated cores).
The annotation was performed by seven experts including two specialist pathologists.

Table 1: Evaluation Results for different models.

Model Precision Recall F1-score

123S 0.80 0.85 0.80
dilatednet 0.80 0.83 0.79
drn-C26 0.78 0.85 0.79
drn-C42 0.79 0.85 0.80
unet 0.80 0.86 0.80
densenet-D56 0.79 0.80 0.76
densenet-D103 0.79 0.79 0.76

The annotated 707 cores were split into a train-
ing set of 354 cores, a validation set of 175 cores,
and 178 cores for a test set. These three datasets
were balanced with respect to areas annotated as
cancer, stroma, necrosis, and normal lung tissue
areas. In total, 7 deep learning models for seg-
mentation of cancer areas in the lung tissue were
trained. The models were trained and evaluated
on a cluster with 10 TitanXp GPUs with 12GB
VRAM and 64GB RAM.

Firstly, the trained segmentation models were
evaluated qualitatively by pathologists. The pre-
dictions demonstrated striking accuracy at pixel
level (see Figure 1a). Then Precision, Recall, and F1-score metrics were calculated with 123S and
unet slightly outperforming other networks (see Table 1, the metrics were calculated on the pixel
level for each core and then averaged for 178 test cores). For evaluation, an optimal threshold for
predictions was chosen in order to find a good trade-off between Precision and Recall of the models.
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(a) Examples of predicted cancer in 2 test cores. (b) Examples of predicted cancer in 4 Stanford TMAs.

Figure 1: Examples of predicted cancer areas by the deep learning framework (123S model).

In our experiments, we predicted cancer heatmaps for a few cores from publicly available Stanford
TMA cores [1]. Pathologists qualitatively inspected these predictions and expressed an opinion of
high potential of the trained models producing accurate predictions at the pixel level (see Figure 1b).

4 Conclusions and Future Work

In this paper, we introduced a novel deep learning framework for accurate segmentation of cancerous
areas in lung tissues. The framework demonstrated high pixel-wise performance in outlining cancer
areas in lung TMA cores. The performance of the trained models was tested on publicly available
Stanford TMAs as well. For this purpose, the predictions were examined qualitatively by trained
pathologists. The trained models showed high potential in identifying cancer areas in TMA cores.

For future work, we plan to quantitatively evaluate the performance of the trained models on diverse
lung tissues datasets. First, we will quantitatively evaluate the performance of our models on Stanford
TMA cores by exhaustively annotating some of the cores. Also, we are going to test the trained
models on biopsies and images from more clinical settings.
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